
Simulink® PLC Coder™
Reference

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® PLC Coder™ Reference
© COPYRIGHT 2019–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2019 Online only New for Version 3.0 (Release 2019a)
September 2019 Online only Revised for Version 3.1 (Release 2019b)
March 2020 Online only Revised for Version 3.2 (Release 2020a)
September 2020 Online only Revised for Version 3.3 (Release 2020b)
March 2021 Online only Revised for Version 3.4 (Release 2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Blocks
1

Functions
2

iii

Contents

Blocks

1

ADD
Add inputs
Library:

Description
The ADD block implements the ADD ladder logic instruction. When the rung conditions are true, the
block adds source A (srcA) to source B (srcB) and outputs the result to the destination (dest).

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

srcA — First input signal
scalar

The first input signal to the addition operation.
Data Types: int8 | int16 | int32 | single

srcB — Second input signal
scalar

The second input signal to the addition operation.
Data Types: int8 | int16 | int32 | single

Output

EnableOut — Enable Output
off (default) | on

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

dest — Output signal
scalar

1 Blocks

1-2

Output signal resulting from the addition operation.
Data Types: int8 | int16 | int32 | single

See Also
CPT | DIV | MUL | SUB

Introduced in R2019a

 ADD

1-3

AFI
Always False
Library:

Description
The AFI block implements the AFI ladder logic instruction. This block sets its EnableOut signal to
false. Use this block to temporarily disable a rung while you are debugging.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

Output

EnableOut — Enable Output
off (default) | on

When the block executes, it automatically sets the EnableOut to false. This disables the subsequent
blocks on the rung.

See Also
AFI | JMP | LBL | MCR | NOP | TND

Introduced in R2019a

1 Blocks

1-4

AND
Bitwise AND
Library:

Description
The AND block implements the AND ladder logic instruction. When the rung conditions are true, the
block performs bitwise AND operation on the values at source A with the values at source B. The
result of this operation is available at the destination port (dest).

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

srcA — First input signal
scalar

The first input signal to the bitwise AND operation. If the datatype is single (REAL – ladder logic
equivalent), the input value is converted to int32 (DINT – ladder logic equivalent). int8, int16
(SINT,INT – ladder logic equivalent) datatypes are converted to int32 (DINT – ladder logic
equivalent) by filling the upper bits with 0s.
Data Types: int8 | int16 | int32 | single

srcB — Second input signal
scalar

The second input signal to the bitwise AND operation. If the datatype is single (REAL – ladder logic
equivalent), the input value is converted to int32 (DINT – ladder logic equivalent). int8, int16
(SINT,INT – ladder logic equivalent) datatypes are converted to int32 (DINT – ladder logic
equivalent) by filling the upper bits with 0s.
Data Types: int8 | int16 | int32 | single

Output

EnableOut — Enable Output
off (default) | on

 AND

1-5

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

dest — Output signal
scalar

Output signal resulting from the bitwise AND operation. If the datatype is single (REAL – ladder
logic equivalent), the resultant int32 (DINT – ladder logic equivalent) is converted to REAL (single
– ladder logic equivalent).
Data Types: int8 | int16 | int32 | single

See Also
NOT | OR

Introduced in R2019a

1 Blocks

1-6

AOI Runner
AOI Runner
Library:

Description
AOI Runner is a top organisational unit. It consists of AOI block. The AOI runner acts as an
encapsulation around the ladder diagram function block.

See Also
Ladder Diagram Program | Ladder Diagram Subroutine | Ladder Diagram Function Block (AOI) | PLC
Controller | Task

Introduced in R2019a

 AOI Runner

1-7

CLR
Clear
Library:

Description
The CLR block implements the CLR ladder logic instruction. When the rung conditions are true, the
block clears all the bits specified in the Data To Clear tag.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

Output

EnableOut — Enable Output
off (default) | on

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

Parameters
Data To Clear — Operand data
A (default) | boolean

Specify the data bits to be cleared. Data bits are specified in the format of tags. In Ladder Diagrams,
tags (variables) are used for representing all inputs, outputs, and internal memory with attributes
such as Data Type, Initial Value, and size. To change the attributes of the Data To Clear,
open the Program Variables table within the Ladder Diagram Program block.
Programmatic Use
Block Parameter: PLCOperandTag
Type: character vector
Value: character vector
Default: 'A'

See Also
MOV

1 Blocks

1-8

Introduced in R2019a

 CLR

1-9

ControllerTags

Syntax

Description
The Controller Tags table is used to specify the global variable and I/O symbol attributes.

For example, the controller tag table can be used to specify attributes for global variables (tags) as
shown.

See Also
AOI Runner | Ladder Diagram Program | Ladder Diagram Subroutine | Ladder Diagram Function
Block (AOI) | Task

Introduced in R2019a

1 Blocks

1-10

COP
Copy File
Library:

Description
The COP block implements the COP instruction. When the rung conditions are true, the block is used
to copy the data of the source and store it at the destination, keeping the source unchanged.

Limitations
• Source and destination elements support only numerical data types.
• Source initial element index and destination element initial index start from zero.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

src — Source
scalar | vector | matrix

It gives the value stored at source. This data is copied into destination.
Data Types: int8 | int16 | int32 | int64 | single | String | Structure

length — Length of elements
scalar

It gives the number or source elements to copy.
Data Types: int8 | int16 | int32

Output

EnableOut — Enable Output
off (default) | on

 COP

1-11

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

Parameters
Source Initial Element Index — Source Start Index
1 (default) | scalar

Source Start Index is used only when the source is an array. It specifies the index of the first element
to be copied into destination. If the source is not an array, then the value of Source Inital
Element Index is 1.

Programmatic Use
Block Parameter: PLCSRCArrayIndex
Type: scalar
Value: scalar
Default: 1
Data Types: int8 | int16 | int32 | single

Destination Array Name — Destination
A (default) | boolean

The data copied from source is stored in destination. The destination is specified in the format of
tags. In Ladder Diagrams, tags (variables) are used for representing all inputs, outputs, and internal
memory with attributes such as Data Type, Initial Value, and size. To change the attributes of
the Destination Array Name, open the Program Variables table within the Ladder Diagram
Program block.

Programmatic Use
Block Parameter: PLCOperandTag
Type: character vector
Value: character vector
Default: 'A'

Destination Initial Element Index — Destination Start Index
scalar

Destination Start Index is used only when the source is an array. It specifies the start index of
destination where the data is copied. If the source and destination data is not stored in an array, then
the value of Destination Initial Element Index is 1.

Programmatic Use
Block Parameter: PLCDestArrayIndex
Type: scalar
Value: scalar
Default: 0
Data Types: int8 | int16 | int32 | single

See Also
FLL

Introduced in R2019a

1 Blocks

1-12

CPT
Evaluate expression
Library:

Description
The CPT block implements the CPT ladder logic instruction. When the rung conditions are true, the
block evaluates the expression Expr and outputs the result to the destination (dest).

Limitations
• The CPT ladder diagram instruction does not support direct operand calls. Currently MOD, AND,

XOR, FTD, and TOD instructions are unsupported as CPT operands.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

Output

EnableOut — Enable Output
off (default) | on

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

dest — Output Signal
scalar

The result obtained after computing the expression is placed at the destination.
Data Types: int8 | int16 | int32 | single

 CPT

1-13

Parameters
Expression to Evaluate — Expression to evaluate
'Expr' (default) | character vector

Specify the expression to be evaluated. An expression consisting of tags and/or immediate values
separated by operators. In Ladder Diagrams, tags (variables) are used for representing all inputs,
outputs, and internal memory with attributes such as Data Type, Initial Value, and size. To
change the attributes of the Expression to Evaluate, open the Program Variables table within
the Ladder Diagram Program block.

Programmatic Use
Block Parameter: PLCOperandTag
Type: character vector
Value: character vector
Default: 'Expr'

See Also
ADD | DIV | MUL | SUB

Introduced in R2019a

1 Blocks

1-14

CTD
Count Down
Library:

Description
The CTD block implements the CTD ladder logic instruction. When the rung conditions are true, the
block counts downwards.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

Output

CD — Count Down Enable Output
off (default) | on

The count down enable output contains the rung-in condition when the instruction was last executed.
By default, CD follows the state of EnableIn. If the EnableIn input to the block is false, the logic
implemented by the block is not executed and CD signal is set to false.

Parameters
Counter Tag — Counter Structure
C (default) | character vector

Specify the counter parameters in the format of tags. In Ladder Diagrams, tags (variables) are used
for representing all inputs, outputs, and internal memory with attributes such as Data Type,
Initial Value, and size. To change the attributes of the Operand Tag, open the Program
Variables table within the Ladder Diagram Program block. The Data Type of the timer tag is of the
Bus:COUNTER type with its initial value specified as a structure containing the following fields:

 CTD

1-15

Field Description Default Value
PRE The preset value specifies the

value which the accumulated
value must reach before the
instruction indicates it is done

0

ACC The accumulated value specifies
the number of transitions the
instruction has counted.

0

CU The count up enable contains
rung-condition-in when the
instruction was last executed.

1

CD Count down enabled. 1
DN The done bit when set indicates

the counting operation is
complete

0

OV The overflow bit when set
indicates the counter
incremented past the upper
limit of 2,147,483,647

0

UN The underflow when set
indicates the counter
decremented past the lower
limit of -2,147,483,648.

0

Programmatic Use
Block Parameter: PLCOperandTag
Type: character vector
Value: character vector
Default: 'T'

See Also
CTD | RES | RTO | TOF | TON

Introduced in R2019a

1 Blocks

1-16

CTU
Count Up
Library:

Description
The CTU block implements the CTU ladder logic instruction. When the rung conditions are true, the
block counts upwards.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

Output

CU — Count Up Enable Output
off (default) | on

The count up enable output contains the rung-in condition when the instruction was last executed. By
default, CU follows the state of EnableIn. If the EnableIn input to the block is false, the logic
implemented by the block is not executed and CU signal is set to false.

Parameters
Counter Tag — Counter Structure
C (default) | character vector

Specify the counter parameters in the format of tags. In Ladder Diagrams, tags (variables) are used
for representing all inputs, outputs, and internal memory with attributes such as Data Type,
Initial Value, and size. To change the attributes of the Operand Tag, open the Program
Variables table within the Ladder Diagram Program block. The Data Type of the timer tag is of the
Bus:COUNTER type with its initial value specified as a structure containing the following fields:

 CTU

1-17

Field Description Default Value
PRE The preset value specifies the

value which the accumulated
value must reach before the
instruction indicates it is done

0

ACC The accumulated value specifies
the number of transitions the
instruction has counted.

0

CU The count up enable contains
rung-condition-in when the
instruction was last executed.

1

CD Count down enabled. 1
DN The done bit when set indicates

the counting operation is
complete

0

OV The overflow bit when set
indicates the counter
incremented past the upper
limit of 2,147,483,647

0

UN The underflow when set
indicates the counter
decremented past the lower
limit of -2,147,483,648.

0

Programmatic Use
Block Parameter: PLCOperandTag
Type: character vector
Value: character vector
Default: 'T'

See Also
CTU | RES | RTO | TOF | TON

Introduced in R2019a

1 Blocks

1-18

Custom Instruction
Create custom ladder logic instruction
Library:

Description
The Custom Instruction block implements user-defined instructions for a ladder diagram model.
When the rung conditions are true, the block executes the specified custom logic. You can save these
instructions in a user-defined library named plcuserlib.slx. You can also import, simulate, and
export your ladder logic instructions by using your custom blocks saved in plcuserlib.slx library.

Ports
Input

EnableIn — Enable Input
off (default) | on

The EnableIn port controls the execution of the block and also reflects the rung state preceding the
block. If the rung state preceding the block is false, the EnableIn signal is set to false, the block does
not execute the custom logic, and the outputs are not updated.

src — Input signal
scalar

Input signal to the Custom Instruction block.
Data Types: int8 | int16 | int32 | single

Output

EnableOut — Enable Output
off (default) | on

If the EnableIn input to the block is false, the custom logic implemented by the block is not executed
and EnableOut signal is set to false. If EnableIn is true and the custom instruction executes,
EnableOut signal is set to true.

Parameters
Inputs and Outputs

Instruction Name — Name of user-defined ladder logic instruction
sampleBlock (default) | character vector

 Custom Instruction

1-19

Name of the ladder logic instruction that you want to create. The Rockwell Automation® Studio 5000
IDE must support the ladder logic instruction name.

Number of Inputs — Number of input signals to block
1 (default) | scalar

The number of input signals to the block that are required for your custom ladder logic instruction.

Programmatic Use
Block Parameter: NumInputs
Type: scalar
Value: scalar
Default: 1
Data Types: int8 | int16 | int32 | single

Input Types — Data type of input signal
{{'SINT', 'INT','DINT','REAL'}} (default) | character vector

The data type of the input signal specified as a cell array. If there is more than one input signal,
specify the data type as a comma-separated list of cell arrays for each signal. For example, if you have
two input signals with the same data type, then specify the Input Types as
{{'SINT','INT','DINT','REAL'},{'SINT','INT','DINT','REAL'}}.

Programmatic Use
Block Parameter: InputTypeList
Type: cell array
Value: cell array
Default: {{'SINT','INT','DINT','REAL'}}
Data Types: character vector

Number of Outputs — Number of output signals from block
1 (default) | scalar

The number of output signals from the user-defined Custom Instruction block.

Programmatic Use
Block Parameter: NumOutputs
Type: scalar
Value: scalar
Default: 1
Data Types: int8 | int16 | int32 | single

Output Types — Data type of output signal
{{'SINT','INT','DINT','REAL'}} (default) | character vector

The data type of the output signal specified as a cell array. If there is more than one output signal,
specify the data type as a comma-separated list of cell arrays for each signal. For example, if you have
two output signals with the same data type, then specify the Output Types as
{{'SINT','INT','DINT','REAL'},{'SINT','INT','DINT','REAL'}}.

Programmatic Use
Block Parameter: OutputTypeList
Type: cell array
Value: cell array

1 Blocks

1-20

Default: {{'SINT','INT','DINT','REAL'}}
Data Types: character vector

See Also
plcimportladder | plcladderinstructions

Topics
“Create Custom Instruction in PLC Ladder Diagram Models”
“Import L5X Ladder Files into Simulink”
“Modeling and Simulation of Ladder Diagrams in Simulink”
“Generating Ladder Diagram Code from Simulink”

Introduced in R2020a

 Custom Instruction

1-21

DIV
Divide one input by another
Library:

Description
The DIV block implements the DIV ladder logic instruction. When the rung conditions are true, the
block divides the dividend at source A (srcA) by the divisor at source B (srcB) and outputs the result
to the destination (dest).

Note If you perform a divide by zero operation a "Divide by zero detected" diagnostic
message is generated during code generation.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

srcA — First input signal
scalar

The first input signal to the division operation.
Data Types: int8 | int16 | int32 | single

srcB — Second input signal
scalar

The second input signal to the division operation.
Data Types: int8 | int16 | int32 | single

Output

EnableOut — Enable Output
off (default) | on

1 Blocks

1-22

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

dest — Output signal
scalar

Output signal resulting from the division operation.
Data Types: int8 | int16 | int32 | single

See Also
ADD | CPT | MUL | SUB

Introduced in R2019a

 DIV

1-23

EQU
Equal To
Library:

Description
The EQU block implements the EQU instruction. When the rung conditions are true,the block verifies
whether the value at source A is equal to the value at source B.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

srcA — First input signal
scalar

Value to test against srcB.
Data Types: int8 | int16 | int32 | single

srcB — Second input signal
scalar

Value to test against srcA.
Data Types: int8 | int16 | int32 | single

Output

EnableOut — Enable Output
off (default) | on

If the EnableIn input to the block is false, the logic implemented by the block is not executed and
EnableOut signal is set to false. If EnableIn is true, EnableOut signal is set to true, if srcA is equal
to srcb.

1 Blocks

1-24

See Also
GEQ | GRT | LEQ | LES | NEQ

Introduced in R2019a

 EQU

1-25

FBC
File Bit Comparison
Library:

Description
The FBC block implements the FBC instruction. The block compares the source and reference data
bit by bit and stores the outcome in result.

Ports
Input

EnableIn — Enable Input
off (default) | on

This acts as the enabler for the block. The FBC block executes only when EnableIn is true.

src — Source
integer

It gives the value stored at source. This value is compared with reference. Since the block performs a
bit comparison, the source is an array variable.
Data Types: int32

ref — Reference
integer

It gives the value stored at reference. This value is compared with source. Since the block performs a
bit comparison, the reference is an array variable.
Data Types: int32

res — Result
integer

1 Blocks

1-26

The result of bit comparison between source and reference is stored at Result. This is an array
variable.
Data Types: int32

compareCtrl — Compare Control
structure

It is a structure consisting of length and position variables. The length variable stores the number of
bits to compare. The position variable stores the current position in the source. The initial value of
position variable is 0.

resultsCtrl — Results Control
structure

It is a structure consisting of length and position variables. The length variable stores the number of
storage locations in the result. The position variable stores the current position in the result. The
initial value of position variable is 0.

srcIndex — Source Index
scalar

Source Start Index specifies the index of the starting element in source for comparison. Typically the
value of srcIndex is 0.
Data Types: int8 | int16 | int32 | single

refIndex — Reference Index
scalar

Reference Start Index specifies the index of the starting element in reference for comparison.
Typically the value of refIndex is 0.
Data Types: int8 | int16 | int32 | single

resIndex — Result Index
scalar

Result Start Index specifies the index of the starting element in result for storing the result of
comparison. Typically the value of resIndex is 0.
Data Types: int8 | int16 | int32 | single

Output

EnableOut — Enable Output
off (default) | on

When set, EnableOut provides the result of the block at the output. Once EnableIn is set, it
automatically sets the EnableOut.

resOut — Result Output
integer

The result of comparison stored in res is available at the output port. The data can be read by
connecting a variable write block at resOut.

 FBC

1-27

Data Types: int32

compareOut — Compare Output
structure

The comparison operation modifies the values of position and length variable of compareCtrl. The
compareCtrl structure is available at the compareOut port. The data can be read by connecting a
variable write block to it.

ResultsOut — Results Output
structure

The comparison operation modifies the values of position and length variable of resultsCtrl. The
resultsCtrl structure is available at the resultsOut port. The data can be read by connecting a variable
write block to it.

Parameters
Sample time (-1 for inherited) — Discrete interval between sample time hits
-1 (default) | scalar

Enter the discrete interval between sample time hits or specify -1 to inherit the sample time

See also “Specify Sample Time”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Value: real scalar
Default: '-1'

See Also

Introduced in R2019a

1 Blocks

1-28

FLL
File Fill
Library:

Description
The FLL block implements the FLL instruction. When the rung conditions are true, the block fills a
block of memory with the provided source value. The Source remains unchanged.

Limitations
• Source elements should be scalar numeric data types.
• Destination elements should be scalar numeric data types.
• Source and destination elements should be of the same data type.
• Source initial element index and destination element initial index start from zero.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

src — Source
scalar | vector | matrix

It gives the value stored at source. This data is copied into destination.
Data Types: int8 | int16 | int32 | int64 | single | String | Structure

length — Length of elements
scalar

Number of destination elements to fill.
Data Types: int8 | int16 | int32

 FLL

1-29

Output

EnableOut — Enable Output
off (default) | on

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

Parameters
Destination Array Name — Destination
A (default) | boolean

The data copied from source is filled to the destination. The destination is specified in the format of
tags. In Ladder Diagrams, tags (variables) are used for representing all inputs, outputs, and internal
memory with attributes such as Data Type, Initial Value, and size. To change the attributes of
the Destination Array Name, open the Program Variables table within the Ladder Diagram
Program block.

Programmatic Use
Block Parameter: PLCOperandTag
Type: character vector
Value: character vector
Default: 'A'

Destination Initial Element Index — Destination Start Index
scalar

Destination Start Index is used only when the source is an array. It specifies the start index of
destination where the data is copied. If the source and destination data is not stored in an array, then
the value of Destination Initial Element Index is 1.

Programmatic Use
Block Parameter: PLCDestArrayIndex
Type: scalar
Value: scalar
Default: 0
Data Types: int8 | int16 | int32 | single

See Also
COP

Introduced in R2019a

1 Blocks

1-30

FRD
Convert to integer
Library:

Description
The FRD block implements the FRD ladder logic instruction. When the rung conditions are true, the
block converts the BCD value at source A (srcA) to a decimal value and outputs the result to the
destination (dest).

Note The FRD block is not supported by Simulink® Design Verifier™.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

srcA — Input signal
scalar

The input value to the conversion operation.
Data Types: int8 | int16 | int32

Output

EnableOut — Enable Output
off (default) | on

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

dest — Output signal
scalar

The decimal equivalent value of input is present at the destination.
Data Types: int8 | int16 | int32

 FRD

1-31

See Also
ADD | CPT | DIV | MUL | SUB

Introduced in R2019a

1 Blocks

1-32

GEQ
Greater Than or Equal To
Library:

Description
The GEQ block implements the GEQ instruction. When the rung conditions are true,the block verifies
whether the value at source A is greater than or equal to the value at source B.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

srcA — First input signal
scalar

Value to test against srcB.
Data Types: int8 | int16 | int32 | single

srcB — Second input signal
scalar

Value to test against srcA.
Data Types: int8 | int16 | int32 | single

Output

EnableOut — Enable Output
off (default) | on

If the EnableIn input to the block is false, the logic implemented by the block is not executed and
EnableOut signal is set to false. If EnableIn is true, EnableOut signal is set to true, if srcA is
greater than or equal to srcb.

 GEQ

1-33

See Also
EQU | GRT | LEQ | LES | NEQ

Introduced in R2019a

1 Blocks

1-34

GRT
Greater than
Library:

Description
The GRT block implements the GRT instruction. When the rung conditions are true,the block verifies
whether the value at source A is greater than the value at source B.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

srcA — First input signal
scalar

Value to test against srcB.
Data Types: int8 | int16 | int32 | single

srcB — Second input signal
scalar

Value to test against srcA.
Data Types: int8 | int16 | int32 | single

Output

EnableOut — Enable Output
off (default) | on

If the EnableIn input to the block is false, the logic implemented by the block is not executed and
EnableOut signal is set to false. If EnableIn is true, EnableOut signal is set to true, if srcA is
greater than srcb.

 GRT

1-35

See Also
EQU | GEQ | LEQ | LES | NEQ

Introduced in R2019a

1 Blocks

1-36

JMP
Jump
Library:

Description
The JMP block implements the JMP ladder logic instruction. When the rung conditions are true, the
block skips a part of ladder logic and the rung execution moves to the block referenced by the label
block. Jump block can only skip the rungs after it. The block does not support a backward jump.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

Output

EN — Enable Output
off (default) | on

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

Parameters
Jump to Label — Name of the label
L (default) | character vector

Specify the name for associated LBL instruction.

Programmatic Use
Block Parameter: PLCLabelTag
Type: character vector
Value: character vector
Default: 'L'

See Also
AFI | LBL | MCR | NOP | TND

 JMP

1-37

Introduced in R2019a

1 Blocks

1-38

Junction
Junction
Library:

Description
The Junction block is used to connect one or more ladder logic branches.

See Also
Power Rail Terminal | Power Rail Start | Rung 1

Introduced in R2019a

 Junction

1-39

Function Block (AOI)
Ladder Diagram Function Block (AOI)
Library:

Description
The Ladder Diagram function block is a standalone, organizational unit. Use this block in the absence
of a general hierarchy of controller, task, program, and ladder diagram. It is also called an AOI block.
The Ladder Diagram function block consists of a ladder diagram and function block variables. The
function block variables represent the function variables used in the ladder diagram and provide
information about its data types, size, and initial value.

Limitations
• Input and output variable data types must be SINT, DINT, INT, REAL, or BOOL.
• Input and output variable size must be one.
• You must not use global variables in ladder diagrams inside the Logic Routine.

Ports
Input

EnableIn — Enable Input
off (default) | on

The EnableIn port controls the execution of the block and reflects the rung state preceding the
block. If the rung state preceding the block is false, the EnableIn signal is set to false, the block does
not execute the custom logic, and the outputs are not updated.

Output

EnableOut — Enable Output
off (default) | on

If the EnableIn input to the block is false, the custom logic implemented by the block is not executed
and the EnableOut signal is set to false. If EnableIn is true and the custom instruction executes, the
EnableOut signal is set to true.

1 Blocks

1-40

Parameters
Inputs and Outputs

Function Block Name — Name of AOI
FB (default) | character vector

Name of the AOI function block that you want to create. The Rockwell Automation Studio 5000 IDE
must support the ladder logic instruction name.

Programmatic Use
Block Parameter: PLCPOUName
Type: character vector
Value: character vector
Default: 'FB'

Block Data Tag — Name of the AOI instance
D (default) | character vector

Name of the AOI instance that you want to generate code for or the instance name for the imported
AOI instruction. The Rockwell Automation Studio 5000 IDE must support the ladder logic instruction
name.

Programmatic Use
Block Parameter: PLCOperandTag
Type: character vector
Value: character vector
Default: 'D'

Variable Table — Open AOI variable table
Boolean

Button that opens the AOI variable table.

Programmatic Use
Block Parameter: PLCEditVariableSS
Type: button

Logic Routine — Open AOI ladder logic
Boolean

Button that opens the ladder logic routine to implement the AOI ladder logic.

Programmatic Use
Block Parameter: PLCEditPOU
Type: button

Allow EnableInFalse Routine — Enable EnableInFalse routine ladder logic
Boolean

Check box that you select to enable the ladder logic inside the EnableInFalse routine.

Programmatic Use
Block Parameter: PLCAllowEnableInFalse
Type: check-box

 Function Block (AOI)

1-41

EnableInFalse Routine — Open EnableInFalse routine ladder logic
Boolean

Button that opens the ladder logic routine to implement the AOI EnableInFalse ladder logic.

Programmatic Use
Block Parameter: PLCEditEnableInFalse
Type: button

Allow Prescan Routine — Enable Prescan routine ladder logic
Boolean

Check box that you select to enable the ladder logic inside the Prescan routine.

Programmatic Use
Block Parameter: PLCAllowPrescan
Type: check-box

Prescan Routine — Open Prescan routine ladder logic
Boolean

Button that opens the ladder logic routine to implement the AOI Prescan ladder logic.

Programmatic Use
Block Parameter: PLCEditPrescan
Type: button

See Also
AOI Runner | Ladder Diagram Program | Ladder Diagram Subroutine | Ladder Diagram Function
Block (AOI) | PLC Controller | Task

Introduced in R2019a

1 Blocks

1-42

Program
Ladder Diagram Program
Library:

Description
The Ladder Diagram program consists of the Ladder Diagram representation of the logic and
program variables. The program executes Ladder Diagram rungs from top to bottom and from left to
right. The program variables consists of local and external data types along with its data types, initial
values and size. To understand the link between program structure in the Rockwell IDE and Program
structure using Simulink PLC Coder refer to

Tips
• When naming Programs choose different names for the Programs even if they are in different

Tasks. Rockwell does not allow Programs to have the same names even if they are in different
Tasks. For example, if you have an Input Task and Programs named Program and Program 1 these
Program names will be unable for use in other Tasks in the same controller.

See Also
AOI Runner | Ladder Diagram Program | Ladder Diagram Subroutine | Ladder Diagram Function
Block (AOI) | PLC Controller | Task

Introduced in R2019a

 Program

1-43

Subroutine
Ladder Diagram Subroutine
Library:

Description
Ladder Diagram Subroutine allows you to create and define a named ladder logic routine. You can
edit the logic implemented by the subroutine by clicking on the Routine Logic button found under
the block parameters menu of this block.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

Output

EnableOut — Enable Output
off (default) | on

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

Parameters
Routine Name — Name of the routine
R (default) | character vector

Specify the name of the ladder logic subroutine.
Programmatic Use
Block Parameter: PLCPOUName
Type: character vector
Value: character vector
Default: 'R'

Routine Logic — Open ladder logic
boolean

1 Blocks

1-44

Button that opens the ladder logic subroutine.

Programmatic Use
Block Parameter: PLCOpenRoutine
Type: button

See Also
AOI Runner | Ladder Diagram Program | Ladder Diagram Subroutine | Ladder Diagram Function
Block (AOI) | PLC Controller | Task

Introduced in R2019a

 Subroutine

1-45

LBL
Label
Library:

Description
The LBL block implements the LBL ladder logic instruction. This block is used along with JMP block.
The rung execution jumps to the block referenced by LBL block.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

Output

EN — Enable Output
off (default) | on

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

Parameters
Label — Name of the label
L (default) | character vector

Specify the name for the LBL.

Programmatic Use
Block Parameter: PLCLabelTag
Type: character vector
Value: character vector
Default: 'L'

See Also
AFI | JMP | MCR | NOP | TND

1 Blocks

1-46

Introduced in R2019a

 LBL

1-47

LEQ
Less Than or Equal To
Library:

Description
The LEQ block implements the LEQ instruction. When the rung conditions are true,the block verifies
whether the value at source A is less than or equal to the value at source B.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

srcA — First input signal
scalar

Value to test against srcB.
Data Types: int8 | int16 | int32 | single

srcB — Second input signal
scalar

Value to test against srcA.
Data Types: int8 | int16 | int32 | single

Output

EnableOut — Enable Output
off (default) | on

If the EnableIn input to the block is false, the logic implemented by the block is not executed and
EnableOut signal is set to false. If EnableIn is true, EnableOut signal is set to true, if srcA is less
than or equal to srcb.

1 Blocks

1-48

See Also
EQU | GEQ | GRT | LES | NEQ

Introduced in R2019a

 LEQ

1-49

LES
Less Than
Library:

Description
The LES block implements the LES instruction. When the rung conditions are true,the block verifies
whether the value at source A is less than the value at source B.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

srcA — First input signal
scalar

Value to test against srcB.
Data Types: int8 | int16 | int32 | single

srcB — Second input signal
scalar

Value to test against srcA.
Data Types: int8 | int16 | int32 | single

Output

EnableOut — Enable Output
off (default) | on

If the EnableIn input to the block is false, the logic implemented by the block is not executed and
EnableOut signal is set to false. If EnableIn is true, EnableOut signal is set to true, if srcA is less
than srcb.

1 Blocks

1-50

See Also
EQU | GEQ | GRT | LEQ | NEQ

Introduced in R2019a

 LES

1-51

MCR
Master Control Reset
Library:

Description
The MCR block implements the MCR instruction. The block simulates a master control relay that can
selectively disable a section of rungs.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

Output

EnableOut — Enable Output
off (default) | on

When the block executes, it automatically sets the EnableOut to false. This disables all the
subsequent blocks on the rung.

See Also
AFI | JMP | LBL | NOP | TND

Introduced in R2019a

1 Blocks

1-52

MOV
Move
Library:

Description
The MOV block implements the MOV instruction. When the rung conditions are true,the block moves a
copy of the source to the destination, keeping the source unchanged.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

src — Input signal
scalar

Value to move.
Data Types: int8 | int16 | int32 | single

Output

EnableOut — Enable Output
off (default) | on

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

dest — Output signal
scalar

Tag to store the result.
Data Types: int8 | int16 | int32 | single

See Also
CLR

 MOV

1-53

Introduced in R2019a

1 Blocks

1-54

MUL
Multiply inputs
Library:

Description
The MUL block implements the MUL ladder logic instruction. When the rung conditions are true, the
block multiplies the multiplicand at source A (srcA) with the multiplier at source B (srcB) and
outputs the result to the destination (dest).

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

srcA — First input signal
scalar

The first input signal to the multiplication operation.
Data Types: int8 | int16 | int32 | single

srcB — Second input signal
scalar

The second input signal to the multiplication operation.
Data Types: int8 | int16 | int32 | single

Output

EnableOut — Enable Output
off (default) | on

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

dest — Output signal
scalar

 MUL

1-55

Output signal resulting from the multiplication operation.
Data Types: int8 | int16 | int32 | single

See Also
ADD | CPT | DIV | SUB

Introduced in R2019a

1 Blocks

1-56

NEQ
Not Equal To
Library:

Description
The NEQ block implements the NEQ instruction. When the rung conditions are true,the block verifies
whether the value at source A is not equal to the value at source B.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

srcA — First input signal
scalar

Value to test against srcB.
Data Types: int8 | int16 | int32 | single

srcB — Second input signal
scalar

Value to test against srcA.
Data Types: int8 | int16 | int32 | single

Output

EnableOut — Enable Output
off (default) | on

If the EnableIn input to the block is false, the logic implemented by the block is not executed and
EnableOut signal is set to false. If EnableIn is true, EnableOut signal is set to true, if srcA is not
equal to srcb.

 NEQ

1-57

See Also
EQU | GEQ | GRT | LEQ | LES

Introduced in R2019a

1 Blocks

1-58

NOP
No Operation
Library:

Description
The NOP block implements the NOP function. The block acts as a placeholder. It performs no
operation on enable or disable.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

Output

EnableOut — Enable Output
off (default) | on

When the block executes, it automatically sets the EnableOut to false. This disables all the
subsequent blocks on the rung.

See Also
AFI | JMP | LBL | MCR | TND

Introduced in R2019a

 NOP

1-59

NOT
Bitwise NOT
Library:

Description
The NOT block implements the NOT ladder logic instruction. When the rung conditions are true, the
block performs bitwise NOT operation on the values at source. The result of this operation is
available at the destination port (dest).

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

src — Input signal
scalar

The input signal on which to perform the bitwise NOT operation. If the datatype is single (REAL –
ladder logic equivalent), the input value is converted to int32 (DINT – ladder logic equivalent).
int8, int16 (SINT,INT – ladder logic equivalent) datatypes are converted to int32 (DINT – ladder
logic equivalent) by filling the upper bits with 0s.
Data Types: int8 | int16 | int32 | single

Output

EnableOut — Enable Output
off (default) | on

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

dest — Output signal
scalar

Output signal resulting from the bitwise NOT operation. If the datatype is single (REAL – ladder
logic equivalent), the resultant int32 (DINT – ladder logic equivalent) is converted to REAL (single
– ladder logic equivalent).

1 Blocks

1-60

Data Types: int8 | int16 | int32 | single

See Also
AND | OR

Introduced in R2019a

 NOT

1-61

ONS
One Shot
Library:

Description
The ONS block implements the ONS instruction. The block makes the remainder of the rung true
every time the rung-condition-in transitions from false to true.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

Output

EN — Enable Output
off (default) | on

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

Parameters
Storage Bit — Internal storage bit
SB (default) | boolean

Internal storage bit that retains the rung-condition-in from the last time the instruction was
executed. Specified in the format of tags. In Ladder Diagrams, tags (variables) are used for
representing all inputs, outputs, and internal memory with attributes such as Data Type, Initial
Value, and size. To change the attributes of the Operand Tag, open the Program Variables table
within the Ladder Diagram Program block.

Programmatic Use
Block Parameter: PLCOperandTag
Type: character vector
Value: character vector
Default: 'SB'

1 Blocks

1-62

See Also
OSF | OSR

Introduced in R2019a

 ONS

1-63

OR
Bitwise OR
Library:

Description
The OR block implements the OR ladder logic instruction. When the rung conditions are true, the
block performs bitwise OR operation on the values at source A with the values at source B. The result
of this operation is available at the destination port (dest).

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

srcA — First input signal
scalar

The first input signal to the bitwise OR operation. If the datatype is single (REAL – ladder logic
equivalent), the input value is converted to int32 (DINT – ladder logic equivalent). int8, int16
(SINT,INT – ladder logic equivalent) datatypes are converted to int32 (DINT – ladder logic
equivalent) by filling the upper bits with 0s.
Data Types: int8 | int16 | int32 | single

srcB — Second input signal
scalar

The second input signal to the bitwise OR operation. If the datatype is single (REAL – ladder logic
equivalent), the input value is converted to int32 (DINT – ladder logic equivalent). int8, int16
(SINT,INT – ladder logic equivalent) datatypes are converted to int32 (DINT – ladder logic
equivalent) by filling the upper bits with 0s.
Data Types: int8 | int16 | int32 | single

Output

EnableOut — Enable Output
off (default) | on

1 Blocks

1-64

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

dest — Output signal
scalar

Output signal resulting from the bitwise OR operation. If the datatype is single (REAL – ladder logic
equivalent), the resultant int32 (DINT – ladder logic equivalent) is converted to REAL (single –
ladder logic equivalent).
Data Types: int8 | int16 | int32 | single

See Also
AND | NOT

Introduced in R2019a

 OR

1-65

OSF
One Shot Falling
Library:

Description
The OSF block implements the OSF instruction. The block sets the output bit for one scan when the
rung-condition-in transitions from true to false.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

Output

EN — Enable Output
off (default) | on

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

OB — Output Bit
boolean

Bit to be modified when the rung-condition-in transitions from false to true.
Data Types: Boolean

Parameters
Storage Bit — Internal storage bit
SB (default) | boolean

Internal storage bit that retains the rung-condition-in from the last time the instruction was
executed. Specified in the format of tags. In Ladder Diagrams, tags (variables) are used for
representing all inputs, outputs, and internal memory with attributes such as Data Type, Initial
Value, and size. To change the attributes of the Operand Tag, open the Program Variables table
within the Ladder Diagram Program block.

1 Blocks

1-66

Programmatic Use
Block Parameter: PLCOperandTag
Type: character vector
Value: character vector
Default: 'SB'

See Also
ONS | OSR

Introduced in R2019a

 OSF

1-67

OSR
One Shot Rising
Library:

Description
The OSR block implements the OSR instruction. The block sets the output bit for one scan when the
rung-condition-in transitions from false to true.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

Output

EN — Enable Output
off (default) | on

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

OB — Output Bit
boolean

Bit to be modified when the rung-condition-in transitions from false to true.
Data Types: Boolean

Parameters
Storage Bit — Internal storage bit
SB (default) | boolean

Internal storage bit that retains the rung-condition-in from the last time the instruction was
executed. Specified in the format of tags. In Ladder Diagrams, tags (variables) are used for
representing all inputs, outputs, and internal memory with attributes such as Data Type, Initial
Value, and size. To change the attributes of the Operand Tag, open the Program Variables table
within the Ladder Diagram Program block.

1 Blocks

1-68

Programmatic Use
Block Parameter: PLCOperandTag
Type: character vector
Value: character vector
Default: 'SB'

See Also
ONS | OSF

Introduced in R2019a

 OSR

1-69

OTE
Output Energize
Library:

Description
OTE is one of the building blocks of a ladder diagram. The OTE block implements the OTE ladder logic
instruction. The block examines the state of the rung-condition-in and sets or clears the operand
tag (data bit). If rung condition is true, the block sets the data bit to true.

Parameters
Operand Tag — Bit to be tested
A (default) | boolean

Specify the data bits to be modified. Data bits are specified in the format of tags. In Ladder
Diagrams, tags (variables) are used for representing all inputs, outputs, and internal memory with
attributes such as Data Type, Initial Value, and size. To change the attributes of the Operand
Tag, open the Program Variables table within the Ladder Diagram Program block.

Programmatic Use
Block Parameter: PLCOperandTag
Type: character vector
Value: character vector
Default: 'A'

See Also
OTL | OTU | XIC | XIO

Introduced in R2019a

1 Blocks

1-70

OTL
Output Latch
Library:

Description
OTL is one of the building blocks of a ladder diagram. The OTL block implements the OTL ladder logic
instruction. When the rung condition is true, the block sets the operand tag (data bit) to true. The
data bit remains true until it is cleared, typically by an OTU block. When the rung condition is
changed to false, the block does not change the status of the data bit.

Parameters
Operand Tag — Bit to be tested
A (default) | boolean

Specify the data bits to be modified. Data bits are specified in the format of tags. In Ladder
Diagrams, tags (variables) are used for representing all inputs, outputs, and internal memory with
attributes such as Data Type, Initial Value, and size. To change the attributes of the Operand
Tag, open the Program Variables table within the Ladder Diagram Program block.

Programmatic Use
Block Parameter: PLCOperandTag
Type: character vector
Value: character vector
Default: 'A'

See Also
OTE | OTU | XIC | XIO

Introduced in R2019a

 OTL

1-71

OTU
Output Unlatch
Library:

Description
OTU is one of the building blocks of a ladder diagram. The OTU block implements the OTU ladder logic
instruction. When the rung condition is true, the block clears the operand tag (data bit) to false.
When the rung condition is changed to false, the block does not change the status of the data bit. It is
generally used after the OTL block to unlatch the state and disable the rung.

Parameters
Operand Tag — Bit to be tested
A (default) | boolean

Specify the data bits to be modified. Data bits are specified in the format of tags. In Ladder
Diagrams, tags (variables) are used for representing all inputs, outputs, and internal memory with
attributes such as Data Type, Initial Value, and size. To change the attributes of the Operand
Tag, open the Program Variables table within the Ladder Diagram Program block.

Programmatic Use
Block Parameter: PLCOperandTag
Type: character vector
Value: character vector
Default: 'A'

See Also
OTE | OTL | XIC | XIO

Introduced in R2019a

1 Blocks

1-72

PLC Controller
PLC Controller
Library:

Description
In Ladder Diagram, the controller is a top organisational unit that typically consists of task and
controller tags. There can be a single task or multiple tasks. All the tasks inside a controller are
executed in parallel. There are two types of controller blocks available in Simulink PLC Coder™:

• PLC Controller Suite
• PLC Controller

PLC controller suite is a block hierarchy that models a simple complete Ladder Logic Controller
structure whereas a PLC controller block consists of ladder logic semantics. The controller tags store
the information of global variables such as DataType, Mapping type, Port, Address etc. The global
variables defined for a ladder diagram form the input and output ports of the controller.

See Also
AOI Runner | Ladder Diagram Program | Ladder Diagram Subroutine | Ladder Diagram Function
Block (AOI) | Task

Introduced in R2019a

 PLC Controller

1-73

PLC Controller Suite
PLC Controller
Library:

Description
In Ladder Diagram, the controller is a top organisational unit that typically consists of task and
controller tags. There can be a single task or multiple tasks. All the tasks inside a controller are
executed in parallel. There are two types of controller blocks available in Simulink PLC Coder:

• PLC Controller Suite
• PLC Controller

PLC controller suite is a block hierarchy that models a simple complete Ladder Logic Controller
structure whereas a PLC controller block consists of ladder logic semantics. The controller tags store
the information of global variables such as DataType, Mapping type, Port, Address etc. The global
variables defined for a ladder diagram form the input and output ports of the controller.

See Also
AOI Runner | Ladder Diagram Program | Ladder Diagram Subroutine | Ladder Diagram Function
Block (AOI) | Task

1 Blocks

1-74

Power Rail Start
Power Rail Start
Library:

Description
The block is for reference purpose only. Do not use this block for ladder diagram modeling.

See Also
Junction | Power Rail Terminal | Rung 1

Introduced in R2019a

 Power Rail Start

1-75

Power Rail Terminal
Power Rail Terminal
Library:

Description
The block is for reference purpose only. Do not use this block for ladder diagram modeling.

See Also
Junction | Power Rail Start | Rung 1

Introduced in R2019a

1 Blocks

1-76

ProgramVariables

Syntax

Description
The Program Variables table within the Ladder Diagram Program block contains attributes
associated with tags. The tags can have attributes such as Data Type, Initial Value, and size.

For example, the program variables table can be used to specify attributes for variables (tags) as
shown.

See Also
AOI Runner | Ladder Diagram Program | Ladder Diagram Subroutine | Ladder Diagram Function
Block (AOI) | Task

Introduced in R2019a

 ProgramVariables

1-77

RES
Reset
Library:

Description
The RES block implements the RES ladder logic instruction. When the rung conditions are true, the
block resets the value of TIMER, COUNTER, or a CONTROL structure.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

Output

EN — Enable Output
off (default) | on

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

Parameters
Operand Tag To Reset — Structure to Reset
A (default) | character vector

Specify the tag to reset. In Ladder Diagrams, tags (variables) are used for representing all inputs,
outputs, and internal memory with attributes such as Data Type, Initial Value, and size. To
change the attributes of the Operand Tag To Reset, open the Program Variables table within the
Ladder Diagram Program block.

Programmatic Use
Block Parameter: PLCTagToReset
Type: character vector
Value: character vector
Default: 'A'

Tag Structure — Structure Type
'TIMER or COUNTER' (default) | 'CONTROL'

1 Blocks

1-78

Specify the structure type to reset.

Type Description
TIMER or COUNTER Clears the ACC field of the structure.
CONTROL Clears the POS field of the structure.

Programmatic Use
Block Parameter: PLCTagDataType
Type: character vector
Value: 'TIMER or COUNTER'|'CONTROL'
Default: 'TIMER or COUNTER'

See Also
CTD | CTU | RTO | TOF | TON

Introduced in R2019a

 RES

1-79

RET
Return
Library:

Description
The RET block implements the RET instruction. The blocks is used to return the control of execution
from a subroutine. It can be used only inside a subroutine. This block does not support parameters to
be passed from the subroutine.

Parameters
Sample time (-1 for inherited) — Discrete interval between sample time hits
-1 (default) | scalar

Enter the discrete interval between sample time hits or specify -1 to inherit the sample time

See also “Specify Sample Time”.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Value: real scalar
Default: '-1'

See Also

Introduced in R2019a

1 Blocks

1-80

RTO
Retentive Timer On
Library:

Description
The RTO block implements the RTO ladder logic instruction. When the rung conditions are true, the
block accumulates time until:

• The timer is disabled
• The timer completes

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

Output

EN — Enable Output
off (default) | on

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

Parameters
Timer Tag — Timer Structure
T (default) | character vector

Specify the timer parameters in the format of tags. In Ladder Diagrams, tags (variables) are used for
representing all inputs, outputs, and internal memory with attributes such as Data Type, Initial
Value, and size. To change the attributes of the Operand Tag, open the Program Variables table
within the Ladder Diagram Program block. The Data Type of the timer tag is of the Bus:TIMER type
with its initial value specified as a structure containing the following fields:

 RTO

1-81

Field Description Default Value
PRE The preset value specifies the

value (1 millisecond units)
which the accumulated value
must reach before the
instruction indicates it is done

0

ACC The accumulated value specifies
the number of milliseconds that
have elapsed since the RTO
instruction was enabled.

0

EN The enable bit contains rung-
condition-in when the
instruction was last executed.

0

TT The timing bit when set
indicates the timing operation is
in process.

0

DN The done bit when set indicates
the timing operation is complete
(or paused).

0

Programmatic Use
Block Parameter: PLCOperandTag
Type: character vector
Value: character vector
Default: 'T'

See Also
CTD | CTU | RES | TOF | TON

Introduced in R2019a

1 Blocks

1-82

RungTerminal
Rung Terminal
Library:

Description
The block is for reference purpose only. Do not use this block for ladder diagram modeling.

See Also
Junction | Power Rail Terminal | Power Rail Start

Introduced in R2019a

 RungTerminal

1-83

SUB
Subtract inputs
Library:

Description
The SUB block implements the SUB ladder logic instruction. When the rung conditions are true, the
block subtracts source B (srcB) from source A (srcA) and outputs the result to the destination
(dest).

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

srcA — First input signal
scalar

The first input signal to the subtraction operation.
Data Types: int8 | int16 | int32 | single

srcB — Second input signal
scalar

The second input signal to the subtraction operation.
Data Types: int8 | int16 | int32 | single

Output

EnableOut — Enable Output
off (default) | on

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

dest — Output signal
scalar

1 Blocks

1-84

Output signal resulting from the subtraction operation.
Data Types: int8 | int16 | int32 | single

See Also
ADD | CPT | DIV | MUL

Introduced in R2019a

 SUB

1-85

Task
Task
Library:

Description
The task block is placed inside a PLC controller. There can be multiple tasks inside a controller. Each
task consists of a program or multiple programs.

You can use the get_param and set_param functions to control the settings of the Task block.

Property Name Description
'Name' Task name
'SystemSampleTime' Task rate
'PLCTaskWatchDog' Watch dog timer value
'Priority' Task priority
'Description' Task Description

See Also
AOI Runner | Ladder Diagram Program | Ladder Diagram Subroutine | Ladder Diagram Function
Block (AOI) | PLC Controller | Task

Introduced in R2019a

1 Blocks

1-86

TND
Temporary End
Library:

Description
The TND block implements the TND ladder logic instruction. When the rung conditions are true, the
block acts as the end of ladder diagram execution.

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

Output

EN — Enable Output
off (default) | on

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

See Also
AFI | JMP | LBL | MCR | NOP

Introduced in R2019a

 TND

1-87

TOF
Timer Off Delay
Library:

Description
The TOF block implements the TOF ladder logic instruction. When the rung conditions are true, the
block accumulates time until:

• The timer is disabled
• The timer completes

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

Output

EN — Enable Output
off (default) | on

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

Parameters
Timer Tag — Timer Structure
T (default) | character vector

Specify the timer parameters in the format of tags. In Ladder Diagrams, tags (variables) are used for
representing all inputs, outputs, and internal memory with attributes such as Data Type, Initial
Value, and size. To change the attributes of the Operand Tag, open the Program Variables table
within the Ladder Diagram Program block. The Data Type of the timer tag is of the Bus:TIMER type
with its initial value specified as a structure containing the following fields:

1 Blocks

1-88

Field Description Default Value
PRE The preset value specifies the

value (1 millisecond units)
which the accumulated value
must reach before the
instruction indicates it is done

0

ACC The accumulated value specifies
the number of milliseconds that
have elapsed since the TOF
instruction was enabled.

0

EN The enable bit contains rung-
condition-in when the
instruction was last executed.

0

TT The timing bit when set
indicates the timing operation is
in process.

0

DN The done bit when set indicates
the timing operation is complete
(or paused).

0

Programmatic Use
Block Parameter: PLCOperandTag
Type: character vector
Value: character vector
Default: 'T'

See Also
CTD | CTU | RES | RTO | TON

Introduced in R2019a

 TOF

1-89

TON
Timer On Delay
Library:

Description
The TON block implements the TON ladder logic instruction. When the rung conditions are true, the
block accumulates time until:

• The timer is disabled
• The timer completes

Ports
Input

EnableIn — Enable Input
off (default) | on

Controls the execution of the block. EnableIn reflects the rung state preceding the block. If the rung
state preceding the block is false, EnableIn is false, the block does not execute and the outputs are
not updated.

Output

EN — Enable Output
off (default) | on

By default, EnableOut follows the state of EnableIn. If the EnableIn input to the block is false, the
logic implemented by the block is not executed and EnableOut signal is set to false.

Parameters
Timer Tag — Timer Structure
T (default) | character vector

Specify the timer parameters in the format of tags. In Ladder Diagrams, tags (variables) are used for
representing all inputs, outputs, and internal memory with attributes such as Data Type, Initial
Value, and size. To change the attributes of the Operand Tag, open the Program Variables table
within the Ladder Diagram Program block. The Data Type of the timer tag is of the Bus:TIMER type
with its initial value specified as a structure containing the following fields:

1 Blocks

1-90

Field Description Default Value
PRE The preset value specifies the

value (1 millisecond units)
which the accumulated value
must reach before the
instruction indicates it is done

0

ACC The accumulated value specifies
the number of milliseconds that
have elapsed since the TON
instruction was enabled.

0

EN The enable bit contains rung-
condition-in when the
instruction was last executed.

0

TT The timing bit when set
indicates the timing operation is
in process.

0

DN The done bit when set indicates
the timing operation is complete
(or paused).

0

Programmatic Use
Block Parameter: PLCOperandTag
Type: character vector
Value: character vector
Default: 'T'

See Also
CTD | CTU | RES | RTO | TOF

Introduced in R2019a

 TON

1-91

Variable Read
Variable Read
Library:

Description
The block is used as an input variable assignment.

Parameters
Data Tag — Data to be read
A (default) | boolean

Specify the data to be read, specified in the format of tags. In Ladder Diagrams, tags (variables) are
used for representing all inputs, outputs, and internal memory with attributes such as Data Type,
Initial Value, and size. To change the attributes of the Data Tag, open the Program Variables
table within the Ladder Diagram Program block.

Programmatic Use
Block Parameter: PLCOperandTag
Type: character vector
Value: character vector
Default: 'A'

See Also
Variable Write

Introduced in R2019a

1 Blocks

1-92

Variable Write
Variable Write
Library:

Description
The block is used as an output variable assignment.

Parameters
Data Tag — Data to be written
A (default) | boolean

Specify the data bits to be written, specified in the format of tags. In Ladder Diagrams, tags
(variables) are used for representing all inputs, outputs, and internal memory with attributes such as
Data Type, Initial Value, and size. To change the attributes of the Data Tag, open the
Program Variables table within the Ladder Diagram Program block.

Programmatic Use
Block Parameter: PLCOperandTag
Type: character vector
Value: character vector
Default: 'A'

See Also
Variable Read

Introduced in R2019a

 Variable Write

1-93

XIC
Examine If Closed
Library:

Description
XIC is one of the building blocks of a ladder diagram. The XIC block implements the XIC ladder logic
instruction. The block examines the operand tag (data bit) for an on condition. If the bit is set, the
rung is enabled. If the bit is clear, the rung is disabled.

Parameters
Operand Tag — Bit to be tested
A (default) | boolean

Specify the data bits to be tested. Data bits are specified in the format of tags. In Ladder Diagrams,
tags (variables) are used for representing all inputs, outputs, and internal memory with attributes
such as Data Type, Initial Value, and size. To change the attributes of the Operand Tag,
open the Program Variables table within the Ladder Diagram Program block.

Programmatic Use
Block Parameter: PLCOperandTag
Type: character vector
Value: character vector
Default: 'A'

See Also
OTE | OTL | OTU | XIO

Introduced in R2019a

1 Blocks

1-94

XIO
Examine If Open
Library:

Description
XIO is one of the building blocks of a ladder diagram. The XIO block implements the XIO ladder logic
instruction. The block examines the operand tag (data bit) for an off condition. If the bit is clear, the
rung is enabled. If the bit is set, the rung is disabled.

Parameters
Operand Tag — Bit to be tested
A (default) | boolean

Specify the data bits to be tested. Data bits are specified in the format of tags. In Ladder Diagrams,
tags (variables) are used for representing all inputs, outputs, and internal memory with attributes
such as Data Type, Initial Value, and size. To change the attributes of the Operand Tag,
open the Program Variables table within the Ladder Diagram Program block.

Programmatic Use
Block Parameter: PLCOperandTag
Type: character vector
Value: character vector
Default: 'A'

See Also
OTE | OTL | OTU | XIC

Introduced in R2019a

 XIO

1-95

Functions

2

plccoderdemos
Product examples

Syntax
plccoderdemos

Description
plccoderdemos displays the Simulink PLC Coder examples.

Examples
Display List of Simulink PLC Coder Examples

To display a list of examples, at the command prompt enter:

plccoderdemos

See Also
plcopenconfigset

Introduced in R2010a

2 Functions

2-2

plccoderpref
Manage user preferences

Syntax
plccoderpref

plccoderpref('plctargetide')

plccoderpref('plctargetide', preference_value)

plccoderpref('plctargetide', 'default')

plccoderpref('plctargetidepaths')

plccoderpref('plctargetidepaths','default')

plccoderpref('plctargetlist')

plccoderpref('plctargetlist',targetlist)

Description
plccoderpref displays the current set of user preferences, including the default target IDE.

plccoderpref('plctargetide') returns the current default target IDE. This default can be the
target IDE set previously, or the factory default. The factory default is 'codesys23'.

plccoderpref('plctargetide', preference_value) sets the default target IDE to the one
that you specify in preference_value . This command sets the preference_value to persist as
the default target IDE for future MATLAB® sessions.

plccoderpref('plctargetide', 'default') sets the default target IDE to the factory default
target IDE ('codesys23').

plccoderpref('plctargetidepaths') returns a 1-by-1 structure of the installation paths of
supported target IDEs.

plccoderpref('plctargetidepaths','default') sets the contents of the 1-by-1 structure of
the installation paths to the default values.

plccoderpref('plctargetlist') displays the target IDEs that appear in the reduced Target
IDE list in the Simulink Configuration Parameters dialog box. For more information, see “Target IDE”
and “Show Full Target List”.

plccoderpref('plctargetlist',targetlist) sets the target IDEs that appear in the reduced
Target IDE list to the values that you specify in targetlist.

Examples

 plccoderpref

2-3

Return Current Default Target IDE

• plccoderpref('plctargetide')

ans =
'rslogix5000'

Set rslogix5000 as New Default Target IDE

• plccoderpref('plctargetide', 'rslogix5000')

ans =
'rslogix5000'

See Installation Paths of Supported Target IDEs

• plccoderpref('plctargetidepaths')

ans = struct with fields:
 codesys23: 'C:\Program Files (x86)\3S Software'
 codesys33: 'C:\Program Files\3S CoDeSys'
 codesys35: 'C:\Program Files\3S CoDeSys'
 studio5000: ''
 studio5000_routine: ''
 rslogix5000: ''
 rslogix5000_routine: ''
 brautomation30: 'C:\Program Files\BrAutomation'
 brautomation40: 'C:\Program Files\BrAutomation'
 multiprog50: 'C:\Program Files\KW-Software\MULTIPROG 5.0'
 pcworx60: 'C:\Program Files\Phoenix Contact\Software Suite 150'
 step7: 'C:\Program Files\Siemens'
 tiaportal: 'C:\Program Files\Siemens\Automation'
 tiaportal_double: 'C:\Program Files\Siemens\Automation'
 plcopen: ''
 twincat211: 'C:\TwinCAT'
 twincat3: 'C:\TwinCAT'
 generic: ''
 indraworks: ''
 omron: ''
 selectron: ''

Customize Reduced Target IDE List

• targetlist = {'codesys23','rslogix5000'};
plccoderpref('plctargetlist',targetlist)

ans = 1×2 cell
 {'codesys23'} {'rslogix5000'}

2 Functions

2-4

Reset Reduced Target IDE List

• plccoderpref('plctargetlist','default')

ans = 1×5 cell
 {'codesys23'} {'studio5000'} {'step7'} {'omron'} {'plcopen'}

Append Another IDE to Default Reduced Target IDE List

• plccoderpref('plctargetlist', [plccoderpref('plctargetlist', 'default') 'codesys35'])

ans = 1×6 cell
 {'codesys23'} {'studio5000'} {'step7'} {'omron'} {'plcopen'} {'codesys35'}

Append Another IDE to Current Reduced Target IDE List

• plccoderpref('plctargetlist', [plccoderpref('plctargetlist') 'codesys35'])

ans = 1×8 cell
 {'codesys23'} {'studio5000'} {'step7'} {'omron'} {'plcopen'} {'codesys35'} {'codesys35'} {'codesys35'}

Input Arguments
plctargetide — Name of the target IDE
character vector

String directive that specifies the default target IDE.

Value Description
codesys23 3S-Smart Software Solutions CoDeSys Version 2.3

(default) target IDE
codesys33 3S-Smart Software Solutions CoDeSys Version 3.3

target IDE
codesys35 3S-Smart Software Solutions CoDeSys Version 3.5

target IDE
brautomation30 B&R Automation Studio® 3.0 target IDE
brautomation40 B&R Automation Studio 4.0 target IDE
generic Generic target IDE
indraworks Rexroth IndraWorks version 13V12 IDE
multiprog50 PHOENIX CONTACT (previously KW) Software

MULTIPROG® 5.0 or 5.50 target IDE
omron OMRON® Sysmac® Studio
plcopen PLCopen XML target IDE
pcworx60 Phoenix Contact® PC WORX™ 6.0

 plccoderpref

2-5

Value Description
rslogix5000 Rockwell Automation RSLogix™ 5000 Series target IDE

for AOI format
rslogix5000_routine Rockwell Automation RSLogix 5000 Series target IDE

for routine format
step7 Siemens® SIMATIC® STEP® 7 Version 5 target IDE
studio5000 Rockwell Studio 5000 Logix Designer target IDE for

AOI format
studio5000_routine Rockwell Studio 5000 Logix Designer target IDE for

routine format
twincat211 Beckhoff® TwinCAT® 2.11 target IDE
twincat3 Beckhoff TwinCAT 3 target IDE
tiaportal Siemens TIA Portal
tiaportal_double Siemens TIA Portal with support for double precision

(LREAL type)

plctargetidepaths — Target IDE installation path
character vector

String that specifies the target IDE installation path. Contains a 1-by-1 structure of the installation
paths of supported target IDEs.
codesys23: 'C:\Program Files\3S Software'
codesys33: 'C:\Program Files\3S CoDeSys'
codesys35: 'C:\Program Files\3S CoDeSys'
studio5000: 'C:\Program Files\Rockwell Software'
studio5000_routine: 'C:\Program Files\Rockwell Software'
rslogix5000: 'C:\Program Files\Rockwell Software'
rslogix5000_routine: 'C:\Program Files\Rockwell Software'
brautomation30: 'C:\Program Files\BrAutomation'
brautomation40: 'C:\Program Files\BrAutomation'
multiprog50: 'C:\Program Files\KW-Software\MULTIPROG 5.0'
pcworx60: 'C:\Program Files\Phoenix Contact\Software Suite 150'
step7: 'C:\Program Files\Siemens'
tiaportal: 'C:\Program Files\Siemens\Automation'
tiaportal_double: 'C:\Program Files\Siemens\Automation'
plcopen: ''
twincat211: 'C:\TwinCAT'
twincat3: 'C:\TwinCAT'
generic: ''
indraworks: ''
omron: ''

plctargetlist — List of your target IDEs
cell array of string

Cell array of strings. Each string specifies a target IDE. You can specify any target IDE that is
available for the plctargetide argument.

Use the string default to reset the reduced Target IDE list.

Tips
Use the Simulink Configuration Parameters dialog box to change the installation path of a target IDE
(Target IDE Path).

2 Functions

2-6

Introduced in R2010a

 plccoderpref

2-7

plcgeneratecode
Generate structured text or ladder diagram (L5X) for the atomic subsystem

Syntax
generatedfiles= plcgeneratecode(system)

Description
generatedfiles= plcgeneratecode(system) generates Structure Text or Ladder Diagram for
the specified atomic subsystem in a model.

• Structured Text is generated for the specified atomic subsystem in a model. Argument system is
the fully qualified path name of the atomic subsystem.generatedfiles is a cell array of the
generated file names. You must first load or start the model.

• Ladder Diagram (L5X) file is generated for the specified system in the model. Argument system is
the fully qualified path name of the top organizational unit in the Simulink model. The system
should either be a PLC Controller block, Ladder Diagram Function (AOI) block or an AOI Runner
block. generatedfiles is a cell array of the generated file names. You must first load or start
the Simulink model.

Examples

Generate Structured Text Code for Subsystem

Open or load the model containing the subsystem.

plcdemo_simple_subsystem

2 Functions

2-8

Generate code for the subsystem, plcdemo_simple_subsystem/SimpleSubsystem.

generatedFiles = plcgeneratecode('plcdemo_simple_subsystem/SimpleSubsystem');

Generate PLC Code for Ladder diagram model

The following example demonstrates how to import a simple ladder diagram from an L5X file
(simpleController.L5X) into the Simulink environment and then generate Ladder Diagram (L5X)
from the imported model. The ladder L5X file was created using RSLogix 5000 IDE and contains
contacts and coils representing switches and motor. The following is a snapshot of the ladder
structure.

Use the plcladderimport function to import the ladder into Simulink.
[mdlName,mdlLib,busScript] = plcimportladder('simpleController.L5X','OpenModel','On')

The imported model contains a PLC Controller block named simpleController, followed by a Task
block named MainTask and finally a Ladder Diagram Program block named MainProgram. The
model imported into Simulink has blocks that implement the functionality of the contacts and coils.

 plcgeneratecode

2-9

Generate code for the subsystem, simpleController/simpleController.

generatedFiles = plcgeneratecode('simpleController/simpleController');

PLC code generation successful for 'simpleController/simpleController'.

Generated ladder files:
plcsrc\simpleController_gen.L5X

Input Arguments
system — Full file path
character vector

For Structured Text, system specifies the relative or absolute path to the atomic subsystem in the
Simulink model.

For Ladder Diagram, system specifies the relative or absolute path to the Simulink model, imported
from the Ladder L5X file or a manually created model.

Output Arguments
generatedfiles — Array of generated file names
character array

Specifies the name of the generated code and testbench files.

2 Functions

2-10

See Also
plcgeneratecode | plcgeneraterunnertb | plcimportladder | plcladderlib |
plcladderoption | plcopenconfigset

Introduced in R2010a

 plcgeneratecode

2-11

plcopenconfigset
Open Configuration Parameters dialog box for subsystem

Syntax
plcopenconfigset('subsystem')

Description
plcopenconfigset('subsystem') opens the Configuration Parameters dialog box for the
specified atomic subsystem in the model. subsystem is the fully qualified path name of the atomic
subsystem.

Examples

Open Configuration Parameters for Subsystem

This example shows you how to retrieve the configuration parameters for the subsystem from which
you generate structured text code.

Open the model containing the subsystem.

open_system('plcdemo_simple_subsystem')

Open the Configuration Parameters dialog box for the subsystem, plcdemo_simple_subsystem/
SimpleSubsystem.

plcopenconfigset('plcdemo_simple_subsystem/SimpleSubsystem')

Introduced in R2010a

2 Functions

2-12

plccheckforladder
(Has been removed) Check whether Stateflow chart is ready for Ladder Diagram code generation

Note plccheckforladder will be removed in a future release. For more information, see “Compatibility
Considerations”.

Syntax
plccheckforladder(chartPath)

Description
plccheckforladder(chartPath) checks whether a Stateflow chart (Stateflow) is ready for Ladder
Diagram code generation. If the chart has properties that do not allow Ladder Diagram code
generation, the function shows errors in the Diagnostic Viewer window.

Examples

Preparation of Stateflow Chart for Ladder Diagram Code Generation

Open the model plcdemo_ladder_three_aspect.

open_system('plcdemo_ladder_three_aspect')

The model contains a subsystem Subsys, which contains a Stateflow chart, 3Aspect. Save the model
elsewhere with the name plcdemo_ladder_three_aspect_copy.

Enable super step semantics for the chart. In the chart properties, select Enable Super Step
Semantics.

Check whether the Stateflow chart is ready for Ladder Diagram code generation.

plccheckforladder('plcdemo_ladder_three_aspect_copy/Subsys/3Aspect')

You see the following error message in the Diagnostic Viewer window:

Chart must not have superstep semantics enabled in Objects: 'Subsys/3Aspect'

Prepare the chart for Ladder Diagram code generation.

plcprepareforladder('plcdemo_ladder_three_aspect_copy/Subsys/3Aspect')

Check again whether the chart is ready for Ladder Diagram code generation.

plccheckforladder('plcdemo_ladder_three_aspect_copy/Subsys/3Aspect')

 plccheckforladder

2-13

There are no more error messages. The function plcprepareforladder has disabled super step
semantics for the chart.

Input Arguments
chartPath — Full path name of the Stateflow chart
character vector

Full path name of the Stateflow chart relative to the top level Simulink model, specified as a
character vector. To obtain the full path, select the Stateflow chart in your model and use the gcb
function.
Example: gcb, 'ThreeAspectAutoSignal/Subsystem/AutoSignalChart'

Compatibility Considerations
plccheckforladder will be removed
Not recommended starting in R2019a

plccheckforladder will be removed in a future release. Use Simulink model for ladder logic instead of
Stateflow charts. Use the blocks from the PLC Ladder library to create a model that is compatible
with ladder diagram generation. To open this library, type plcladderlib at the MATLAB command
prompt.

See Also
Topics
“Prepare Chart for Simulink PLC Coder Ladder Diagram Code Generation”
“Generate Simulink PLC Coder Ladder Diagram Code from Stateflow Chart”
“Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram”
“Simulink PLC Coder Ladder Diagram Code Generation”
“Supported IDE Platforms”

Introduced in R2016b

2 Functions

2-14

plcprepareforladder
(Has been removed) Change some Stateflow chart properties to enable Ladder Diagram code
generation

Note plcprepareforladder will be removed in a future release. For more information, see
“Compatibility Considerations”.

Syntax
plcprepareforladder(chartPath)

Description
plcprepareforladder(chartPath) changes certain properties of a Stateflow chart (Stateflow) so
that the chart is ready for Ladder Diagram code generation. The following properties are changed:

• The data types of inputs and outputs are changed to Boolean.
• The action language of the chart is changed to C.
• Super step semantics and chart initialization at execution are disabled.

Examples
Preparation of Stateflow Chart for Ladder Diagram Code Generation

Open the model plcdemo_ladder_three_aspect.

open_system('plcdemo_ladder_three_aspect')

The model contains a subsystem Subsys, which contains a Stateflow chart, 3Aspect. Save the model
elsewhere with the name plcdemo_ladder_three_aspect_copy.

Enable super step semantics for the chart. In the chart properties, select Enable Super Step
Semantics.

Check whether the Stateflow chart is ready for Ladder Diagram code generation.

plccheckforladder('plcdemo_ladder_three_aspect_copy/Subsys/3Aspect')

You see the following error message in the Diagnostic Viewer window:
Chart must not have superstep semantics enabled in Objects: 'Subsys/3Aspect'

Prepare the chart for Ladder Diagram code generation.

plcprepareforladder('plcdemo_ladder_three_aspect_copy/Subsys/3Aspect')

Check again whether the chart is ready for Ladder Diagram code generation.

plccheckforladder('plcdemo_ladder_three_aspect_copy/Subsys/3Aspect')

 plcprepareforladder

2-15

There are no more error messages. The function plcprepareforladder has disabled super step
semantics for the chart.

Tips

• Before you use this function, make a backup copy of your model because the function changes
chart properties.

• The function does not change all properties that would allow for Ladder Diagram code generation.
You must explicitly change certain properties. For the full list of chart properties that are not
allowed, see “Restrictions on Stateflow Chart for Ladder Diagram Generation”.

Input Arguments
chartPath — Full path name of the Stateflow chart
character vector

Full path name of the Stateflow chart relative to the top level Simulink model, specified as a
character vector. To obtain the full path, select the Stateflow chart in your model and use the gcb
function.
Example: gcb, 'ThreeAspectAutoSignal/Subsystem/AutoSignalChart'

Compatibility Considerations
plcprepareforladder will be removed
Not recommended starting in R2019a

plcprepareforladder will be removed in a future release.Use Simulink model for ladder logic instead
of Stateflow charts.

See Also
Topics
“Prepare Chart for Simulink PLC Coder Ladder Diagram Code Generation”
“Generate Simulink PLC Coder Ladder Diagram Code from Stateflow Chart”
“Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram”
“Simulink PLC Coder Ladder Diagram Code Generation”
“Supported IDE Platforms”

Introduced in R2016b

2 Functions

2-16

plcgenerateladder
(Has been removed) Generate Ladder Diagram code from Stateflow chart

Note plcgenerateladder will be removed in a future release. For more information, see
“Compatibility Considerations”.

Syntax
plcgenerateladder(chartPath)
plcgenerateladder(chartPath,Name,Value)

Description
plcgenerateladder(chartPath) generates code from a Stateflow chart (Stateflow) that you can
import to an IDE such as CODESYS 3.5 and view as a ladder diagram.

plcgenerateladder(chartPath,Name,Value) uses additional options specified by one or more
Name,Value pair arguments. For instance, you can create a validation model or test bench to
compare the generated Ladder Diagram code against the original Stateflow chart.

Input Arguments
chartPath — Full path name of the Stateflow chart
character vector

Full path name of the Stateflow chart relative to the top level Simulink model, specified as a
character vector. To obtain the full path, select the Stateflow chart in your model and use the gcb
function.

The Stateflow chart must have these properties:

• The inputs and outputs to the chart must be Boolean. These inputs and outputs correspond to the
input and output terminals of your PLC.

• Each state of the chart must correspond to a chart output.
• The expressions controlling the transition between states must involve only Boolean operations

between the inputs.

For instance, in the following chart, c1, c2, c3, and c4 are Boolean inputs to the model. A1, A2, A3,
and A4 are Boolean outputs from the model.

 plcgenerateladder

2-17

Some advanced Stateflow features are not supported because of inherent restrictions in ladder logic
semantics. See the full list of unsupported features.
Example: gcb, 'ThreeAspectAutoSignal/Subsystem/AutoSignalChart'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'GenerateTestBench','on','PLC_OutputDir','laddereqn' generates test bench
code in addition to the ladder diagram and places the generated files in the subfolder laddereqn of
the current working folder.

GenerateTestBench — Generate test bench for validation
'off' (default) | 'on'

Specify whether a test bench must be generated.

You can import the Ladder Diagram code and the test bench together to a target IDE such as
CODESYS 3.5. In the IDE, you can validate the ladder diagram against the test bench.

InsertGuardResets — Add reset coils to safeguard against multiple active states
'off' (default) | 'on'

In the ladder diagram, when the output coil corresponding to the active state is turned on, reset coils
can be used to force deactivation of other states. The reset coils act as a safeguard against multiple
states being simultaneously active. Specify whether the reset coils must be generated.

• If you do not enable this option, each output is a coil that represents a state in the chart.

The following figure shows an output of the diagram when imported into the CODESYS 3.5 IDE.
The output coil represents a state A1 in the chart. When the state is active, the coil receives
power.

2 Functions

2-18

• If you enable this option, each output is a coil that represents a state of the chart. The output is
also coupled with reset coils that represent the other states. When a particular state is active, the
reset coils force deactivation of the other states.

The following figure shows an output in the ladder diagram when viewed in the CODESYS 3.5 IDE.
The output coil represents a state A1. To avoid multiple states from being simultaneously active,
the signal that turns the coil on also turns on the reset coils associated with the other states A2,
A3, and A4.

GenerateValidationModel — Generate model with Ladder Diagram code for validation
'off' (default) | 'on'

Specify whether a validation model must be generated. You can use the validation model to compare
the generated Ladder Diagram code against the original Stateflow chart.

The validation model has two Subsystem blocks:

• The first block has the original Stateflow Chart.
• The second block has the Ladder Diagram code in a MATLAB Function block.

When you simulate this validation model, for all inputs, the software verifies the output of the second
block against the first block. If the output of the second Subsystem block does not match the first, the
simulation fails.

PLC_OutputDir — Path relative to current folder where generated files are placed
'plcsrc' (default) | character vector

Path relative to the current folder, specified as a character vector. The generated code files are placed
in this subfolder. If you do not specify a value, the subfolder plcsrc is used.

The output folder must not have the same name as the current folder. For instance, if you do not
specify an output folder, plcsrc is used. If the current folder is also plcsrc, an error occurs.
Example: 'out\plccode'

 plcgenerateladder

2-19

Compatibility Considerations
plcgenerateladder will be removed
Not recommended starting in R2019a

plcgenerateladder will be removed in a future release.Use Simulink model for ladder logic instead of
Stateflow charts.

See Also
Topics
“Prepare Chart for Simulink PLC Coder Ladder Diagram Code Generation”
“Generate Simulink PLC Coder Ladder Diagram Code from Stateflow Chart”
“Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram”
“Simulink PLC Coder Ladder Diagram Code Generation”
“Supported IDE Platforms”

Introduced in R2016b

2 Functions

2-20

plcimportladder
Import ladder diagram into a Simulink subsystem

Syntax
mdlname = plcimportladder(filename)

[mdlname,mdllib,genbusscript] = plcimportladder(filename,Name,Value)

Description
mdlname = plcimportladder(filename)generates a Simulink representation of the ladder
diagram in the L5X file created using Rockwell Automation IDEs such as RSLogix 5000 and Studio
5000.

[mdlname,mdllib,genbusscript] = plcimportladder(filename,Name,Value)generates a
Simulink representation of the ladder diagram in the L5X file with properties specified using one or
more Name,Value pair arguments.

Examples

Import Simple Ladder Diagram into Simulink

The following example demonstrates how to import a simple ladder diagram from an L5X file
(simpleController.L5X) into the Simulink environment. Create the simpleController.L5X by
using RSLogix 5000 IDE. The ladder diagram contains contacts and coils representing switches and
motor. The following is a snapshot of the ladder diagram structure.

Use the plcladderimport function to import the created ladder diagram into Simulink. For this
example, the program Name of the ladder is MainProgram and the MainRoutineName is
MainRoutine.
[mdlName,mdlLib,busScript] = plcimportladder('simpleController.L5X','OpenModel','On')

mdlName =

 'simpleController'

mdlLib =

 'simpleController_lib'

 plcimportladder

2-21

busScript =

 []

The imported model contains a PLC Controller block named simpleController, followed by a Task
block named MainTask and finally a Ladder Diagram Program block named MainProgram. The
model imported into Simulink has blocks that implement the functionality of the contacts and coils.

You can traverse up these organizational blocks by double-clicking the Up to Parent POU element.
The Program Variables spreadsheet contains the variables Start, Stop, and Motor. You can use
this table to modify attributes of the variables such as Data Type, Initial Value, and size

Input Arguments
filename — Name of the ladder file
character vector

Specifies the name of the ladder file to read. Depending on the location of your file, you can either
specify the name of the file or provide the full or relative path. name.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [mdlName,mdlLib,genBusScript] =
plcimportladder('sampleLadder.L5X','OpenModel','on','TopAOI','sampleAOI')

2 Functions

2-22

OpenModel — Keep the model open
off (default) | on

At the end of import process, the model is hidden by default. To keep the model open at the end of
import, set the value of OpenModel to on.

TopAOI — Top AOI name
character vector

Specify the function blocks that is to be imported. The software imports it into a ladder diagram
'runner' block.

Output Arguments
mdlname — Simulink model name
character array

Specifies the name of the generated Simulink model.

mdllib — Simulink library name
character array

Specifies the name of the generated Simulink model library.

genbusscript — Name of the bus script
character array

Specifies the name of the generated bus script.

See Also
plccleartypes | plcgeneratecode | plcgeneraterunnertb | plcladderlib |
plcladderoption | plcloadtypes

Topics
“Supported Features in Ladder Diagram”
“Import L5X Ladder Files into Simulink”
“Modeling and Simulation of Ladder Diagrams in Simulink”
“Generating Ladder Diagram Code from Simulink”
“Verify Generated Ladder Diagram Code”

Introduced in R2018a

 plcimportladder

2-23

plcdispextmodedata
Display the external mode logging data

Syntax
plcdispextmodedata(filename)

Description
plcdispextmodedata(filename) displays logging data information contained in the filename
MAT-file on the MATLAB command window. The OPC Toolbox™ is required to run the external mode
visualization.

Examples

Display Logging Data Information

The following example reads the logging data information stored in plc_log_data.mat and displays
it on the command window.

plcdispextmodedata('plc_log_data.mat')

Log data:
#1: Y1: LREAL
#2: Y2: LREAL
#3: Y3: LREAL
#4: io_Chart.out: DINT
#5: io_Chart.ChartMode: DINT
#6: io_Chart.State_A: BOOL
#7: io_Chart.State_B: BOOL
#8: io_Chart.State_C: BOOL
#9: io_Chart.State_D: BOOL
#10: io_Chart.is_active_c3_Subsystem: USINT
#11: io_MATLABFunction.y: LREAL
#12: io_MATLABFunction.i: LREAL
#13: io_S1.y: LREAL
#14: io_S1.UnitDelay_DSTATE: LREAL
#15: i1_S1.y: LREAL
#16: i1_S1.UnitDelay_DSTATE: LREAL

Input Arguments
filename — Name of the MAT-file
character vector

Name of the MAT-file containing the logging information.

See Also
plcgeneratecode | plcrunextmode

2 Functions

2-24

Topics
“External Mode Logging”
“Generate Structured Text Code That Has Logging Instrumentation”
“Visualize and Monitor Logging Data by using Simulation Data Inspector”

Introduced in R2018a

 plcdispextmodedata

2-25

plcladderinstructions
Lists ladder instructions identified by Simulink PLC Coder

Syntax
out = plcladderinstructions

Description
out = plcladderinstructions returns the ladder instructions identified by Simulink PLC Coder.
You can use these instructions to check if a customized, user-defined instruction has been identified
by Simulink PLC Coder.

Examples

Verify Simulink PLC Coder Identified Instructions

To verify if Simulink PLC Coder has identified your newly created instruction, at the MATLAB
command line, enter:

plcladderinstructions

This command lists the instructions that Simulink PLC Coder can use. The supported instructions
displayed in the output now includes your newly created instructions.

Output Arguments
out — Ladder instructions identified by Simulink PLC Coder
character array

List of ladder instructions identified by Simulink PLC Coder.

See Also
Custom Instruction | plcimportladder | plcladderlib

Topics
“Create Custom Instruction in PLC Ladder Diagram Models”
“Import L5X Ladder Files into Simulink”
“Modeling and Simulation of Ladder Diagrams in Simulink”
“Generating Ladder Diagram Code from Simulink”

Introduced in R2020a

2 Functions

2-26

plcrunextmode
Run external mode visualization

Syntax
plcrunextmode(opc_host,target_ide,mdl_name,log_file)
plcrunextmode(___ ,idx_list)
plcrunextmode(___ ,name_list)

Description
plcrunextmode(opc_host,target_ide,mdl_name,log_file) runs external mode visualization
using the settings specified in the arguments. All the logged signals are displayed in the Simulation
Data Inspector.

plcrunextmode(___ ,idx_list) runs external mode visualization and displays only the logged
signals identified by the indices in the idx_list .

plcrunextmode(___ ,name_list) runs external mode visualization and displays only the logged
signals identified by the names in the name_list.

Examples

Visualize Logging Data

The following example uses plcrunextmode to connect to an OPC server and stream log data in to
Simulation Data Inspector.

plcrunextmode ('localhost', 'studio5000', 'ext_demo1', 'plc_log_data.mat');

Input Arguments
opc_host — Host address
character vector

 plcrunextmode

2-27

Host address of the OPC server.
Example: 'localhost'

target_ide — Target IDE string
character vector

Specifies the name of the PLC target IDE.
Example: 'studio5000'

mdl_name — Simulink model name
character vector

Specifies the Simulink model for which the code was generated with logging instrumentation.
Example: 'extmode_demo'

log_file — Logging data MAT-file
character vector

Full file path of the logging data MAT-file.
Example: 'C:\plc_log_data.mat'

idx_list — Index list of logged data
integer vector

The index vector specifying the indices of the logged data signals to display. This argument is
optional.
Example: [1 2 3]

name_list — Name list of the logged data
vector

The name vector specifying the names of the logged data signals to display. This argument is optional.
Example: {'Y1', 'Y2', 'i0_S1.Y'}

See Also
plcdispextmodedata | plcgeneratecode

Topics
“External Mode Logging”
“Generate Structured Text Code That Has Logging Instrumentation”
“Visualize and Monitor Logging Data by using Simulation Data Inspector”

Introduced in R2018a

2 Functions

2-28

plcladderlib
Open the Simulink PLC Coder Ladder Library

Syntax
plcladderlib

Description
plcladderlib opens the Simulink PLC Coder Ladder Library.

Examples

Open the Ladder Library

plcladderlib

 plcladderlib

2-29

See Also
plccleartypes | plcgeneratecode | plcgeneraterunnertb | plcimportladder |

2 Functions

2-30

plcladderoption | plcloadtypes

Topics
“Supported Features in Ladder Diagram”
“Import L5X Ladder Files into Simulink”
“Modeling and Simulation of Ladder Diagrams in Simulink”
“Generating Ladder Diagram Code from Simulink”
“Verify Generated Ladder Diagram Code”

Introduced in R2019a

 plcladderlib

2-31

plcloadtypes
Load the data types for Simulink PLC Coder ladder models

Syntax
plcloadtypes

Description
plcloadtypes loads the data types used by PLC Ladder models into the MATLAB workspace.

Examples

Load Data types for Ladder diagram model

The following example demonstrates how to load the data types associated with a Ladder model in
Simulink.

Use the plcloadtypes function to load the data types associated with the Simulink Ladder Diagram
model.

plcloadtypes

The data types are loaded into the MATLAB workspace.

See Also
plccleartypes | plcgeneratecode | plcgeneraterunnertb | plcimportladder |
plcladderlib | plcladderoption

Topics
“Supported Features in Ladder Diagram”
“Import L5X Ladder Files into Simulink”
“Modeling and Simulation of Ladder Diagrams in Simulink”
“Generating Ladder Diagram Code from Simulink”
“Verify Generated Ladder Diagram Code”

Introduced in R2019a

2 Functions

2-32

plccleartypes
Clear the data types associated with the Simulink PLC Coder ladder models from the workspace

Syntax
plccleartypes

Description
plccleartypes clears the ladder data types from the MATLAB workspace.

Examples

Clear data types from a Ladder Diagram model

The following example demonstrates how to clear the data types associated with a Ladder model in
Simulink.

Use the plccleartypes function to clear the data types associated with the Simulink Ladder
Diagram model.

plccleartypes

The data types are cleared from the MATLAB workspace.

See Also
plcgeneratecode | plcgeneraterunnertb | plcimportladder | plcladderlib |
plcladderoption | plcloadtypes

Topics
“Supported Features in Ladder Diagram”
“Import L5X Ladder Files into Simulink”
“Modeling and Simulation of Ladder Diagrams in Simulink”
“Generating Ladder Diagram Code from Simulink”
“Verify Generated Ladder Diagram Code”

Introduced in R2019a

 plccleartypes

2-33

plcladderoption
Get or set parameter values associated with Ladder Diagram models

Syntax
currentState = plcladderoption(mdlname,Name,Value)

Description
currentState = plcladderoption(mdlname,Name,Value) sets the parameter to the specified
value for the Simulink ladder diagram model. Open or load the Simulink ladder diagram model first.
If the Value argument is not specified this function returns the value of the specified parameter for
the ladder diagram model.

Examples

Set the parameter value for Ladder diagram model

The following example demonstrates how to import a simple ladder diagram from an L5X file
(simpleController.L5X) into the Simulink environment and set ladder options. The ladder L5X file
was created using RSLogix 5000 IDE and contains contacts and coils representing switches and
motor. The following is a snapshot of the ladder structure.

Use the plcladderimport function to import the ladder into Simulink. For this example, the
program Name of the ladder is MainProgram and the MainRoutineName is MainRoutine.
[mdlName,mdlLib,busScript] = plcimportladder('simpleController.L5X','OpenModel','On')

The imported model contains a PLC Controller block named simpleController, followed by a Task
block named MainTask and finally a Ladder Diagram Program block named MainProgram. The
model imported into Simulink has blocks that implement the functionality of the contacts and coils.

2 Functions

2-34

Use the plcladderoption function to enable FastSim.

currentState = plcladderoption('simpleController','FastSim','on');

Input Arguments
mdlname — Simulink model name
character array

Specifies the name of the generated Simulink model.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: plcladderoption('simpleController','Animation','on')

FastSim — Enable animation and data display
off (default) | on

When 'on', this option disables all animation and data display. If 'FastSim' is set to 'on', then any
change made to 'Animation' and 'DataDisplay' parameter would not change simulation
behavior.

Animation — Animation of ladder rungs
on (default) | off

This option enables/disables animation of Ladder Diagram rungs, when 'FastSim' is in 'off' state

 plcladderoption

2-35

DataDisplay — Data Display
off (default) | on

This option enables/disables data display of Ladder Diagram rungs, when 'FastSim' is in 'off'
state

SLDV — Simulink Design Verifier
off (default) | on

This option enables/disables using Simulink Design Verifier features with Ladder Diagrams. Set
'SLDV' parameter to 'on' before SLDV analysis. SLDV analysis could be still done without using
'SLDV' option, by setting 'FastSim' to 'on' and 'Prescan' to 'off'.

Prescan — Prescan
on (default) | off

This option enables/disables Prescan for instructions and AOI blocks explicitly for Simulink Design
Verifier analysis.

Output Arguments
currentState — The value of the specified parameter name for the ladder diagram model
off | on

The value of the specified parameter name for the ladder diagram model.

See Also
plccleartypes | plcgeneratecode | plcgeneraterunnertb | plcimportladder |
plcladderlib | plcloadtypes

Topics
“Supported Features in Ladder Diagram”
“Import L5X Ladder Files into Simulink”
“Modeling and Simulation of Ladder Diagrams in Simulink”
“Generating Ladder Diagram Code from Simulink”
“Verify Generated Ladder Diagram Code”

Introduced in R2019a

2 Functions

2-36

plcgeneraterunnertb
Generate L5X test bench code for specified AOI Runner block and AOI name

Syntax
TbCode = plcgeneraterunnertb (runnerBlk)

Description
TbCode = plcgeneraterunnertb (runnerBlk) returns the generated test bench code for the
AOI runner block of the ladder diagram model. Open or load the Simulink Ladder Diagram model
first.

Examples

Generate Test bench for AOI runner block

The following example demonstrates how to import a simple ladder diagram from an L5X file
(simpleXIC.L5X) into the Simulink environment and generate test bench code for it. The ladder L5X
file was created using RSLogix 5000 IDE and contains an AOI named simpleXIC with contact and
coil representing a switch and a light. The following is a snapshot of the ladder structure.

Use the plcladderimport function to import the ladder into Simulink.
[mdlName,mdlLib,busScript] = plcimportladder('simpleXIC.L5X',...
'OpenModel','On','TopAOI','simpleXIC')

The imported model contains an AOI Runner block named simpleXIC_runner, followed by a Ladder
Diagram Function (AOI) block named simpleXIC.

 plcgeneraterunnertb

2-37

Add Signal Builder input block, Scope and output ports as shown.

Modify the Signal Builder input to mimic a switch operation as shown.

2 Functions

2-38

Generate test-bench for the Ladder Diagram model.

Tbcode = plcgeneraterunnertb('simpleXIC_runner/simpleXIC_runner')

Tbcode =

 1×1 cell array

 {'C:\runnerTB\simpleXIC_runner.L5X'}

If the test-bench code generation is successful, a test-bench file simpleXIC_runner.L5X is created.
The generated AOI test bench file can be verified on Rockwell Automation IDE.

 plcgeneraterunnertb

2-39

Note Test-bench generation for ladder diagram models containing timer blocks such as TON, TOF and
RTO fails. To generate test-bench code for these models, modify the ladder diagram structure while
maintaining the logic.

Input Arguments
runnerBlk — AOI runner block name
character vector

AOI runner block name specified as character vector.

Output Arguments
TbCode — Test-bench Code
character vector

Generated test-bench file name specified as character vector.

See Also
plccleartypes | plcgeneratecode | plcgeneraterunnertb | plcimportladder |
plcladderlib | plcladderoption | plcloadtypes

Topics
“Supported Features in Ladder Diagram”
“Import L5X Ladder Files into Simulink”
“Modeling and Simulation of Ladder Diagrams in Simulink”
“Generating Ladder Diagram Code from Simulink”
“Verify Generated Ladder Diagram Code”

Introduced in R2019a

2 Functions

2-40

	Blocks
	ADD
	AFI
	AND
	AOI Runner
	CLR
	ControllerTags
	COP
	CPT
	CTD
	CTU
	Custom Instruction
	DIV
	EQU
	FBC
	FLL
	FRD
	GEQ
	GRT
	JMP
	Junction
	Function Block (AOI)
	Program
	Subroutine
	LBL
	LEQ
	LES
	MCR
	MOV
	MUL
	NEQ
	NOP
	NOT
	ONS
	OR
	OSF
	OSR
	OTE
	OTL
	OTU
	PLC Controller
	PLC Controller Suite
	Power Rail Start
	Power Rail Terminal
	ProgramVariables
	RES
	RET
	RTO
	RungTerminal
	SUB
	Task
	TND
	TOF
	TON
	Variable Read
	Variable Write
	XIC
	XIO

	Functions
	plccoderdemos
	plccoderpref
	plcgeneratecode
	plcopenconfigset
	plccheckforladder
	plcprepareforladder
	plcgenerateladder
	plcimportladder
	plcdispextmodedata
	plcladderinstructions
	plcrunextmode
	plcladderlib
	plcloadtypes
	plccleartypes
	plcladderoption
	plcgeneraterunnertb

	Simulink PLC Coder

